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ABSTRACT

An abstract operator approach is introduced,
permitting a unified study o! discrete- and
continuous-time linear systems. /s an appli-
cation, an algorithm is given for deciding

if a linear system can be built from any
fixed linear component. Finally, a criterion
is given for reachability of the abstract
systems introduced, giving thus a unified
proof of known reachability results for
liscrete-time, continuous-time, and delay-

iifferential systems.
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INTRODUCTTON

We give in this paper an abstract operator approach which permits a
unified study of some problems, like realization, for various kinds of

1

linear systems. This approach improves the one presented in CONTAGI 197!,

Systeme will be defined as interconnections of a basic system o,
-e.¢.,an intepgrator, unit delay, or any fixed linear system,- with coefficients

in a fixel operator ring -representing themselves lumped or distributed

elements. A general realization theorem: "finitely realizable - 'rational' "
iz proved in this context.

Assuming that both a desired linear behavior (iaput /ontput map) f and
a fixed system X are given, a natural question is: can f be realized using

as a basic component ? We give in Section B.” an algorithm which serves
to answer this question.

Refining the definition of systems allows the explicit consideration

of "time" and "pointwise states". We prove in such a context a general

criterion of pointwisze reachability.

The problems in this paper are direct'y related to the theory of linear

systems over commutative rings; for instance, the characterization of finitely

3

realizable behaviors as rational implies the possibility of effectively
constructing realizations, e.g. via Hankel-matrix techniques. See SONTAG! 19761

for a survey of the topic of systems over rings.
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A ADMISGLBLE TRIPLES

4 1

(1) DPefinitions and elementary propertics. .

i DEFINITION. A triple (A, B, n) . where B _i__.': a commutative

. ring, A is a B-module and . is a B-endomorphism of A, 1is
called admissible if the following conditions hold:

fa) . is transcendental (over B), i.e., for 21l L in

1‘.,l 0 dn Endl Al
1 s R

b} Given any hl' S b R A By o - any - AL there A

no o=
one and only one y in A sgatisfying
n
i B b e b oY = pid.
o 1. L

Assume A, B, () is admissible. Denote by (A the image of

it is clearly a B-module. The restriction of , (which we shall

\ 1 e

denote also by () is a - B-endomorphism of A. It follows from

\

uniqueness in (b) above that (nA, B, ) is also admissible. The

smnllest subring of "Zni], [AY  containing | is (isomorphic to)

the polyncmial ring in ., and we denote it by R[,1. By restriction,
we also write Bl,| for the corresponding subring of }".nd“ ().

£1.29) LEMMA.  Assume that B is a commutative ring, A is a
B-module snd ,, is a transcendental B-endomorphism of

A. Then the following statements are equivalent:

{a) JUA; B, p) 1is admissible.
. : R T Lnen ! n
{b)  For all B in N, a&kbi F a0 y cdand all v in Ay
the equation .
X = p(FX + v)
g : N n n .
hos n unique colution X n A, where n: A = A is the

coordinatewise extension of p.




-

(c) There is n subring L) | of’ !';H'i,l LN, eonbaining

Bl le which con be naturally identified to the ring of

rational power series in .

FROOF. (a) (e). Obzerve that condition b)) in (1.1)

asserts that all polynominls in |, having the identity as

independent term are bijective on (A. Indeed, given v = pu in A,
: : g ‘ n
there is a nnique y in A with y + hlf_v JERSe st hn,, y = vy but
n-1 & . . 3
D y) ¢ (A, g0 unique sclutions exist in

A. The meaning as a map of a rational series p/q with p, q in

¥y = plu - h]y - e =

Blnl and afo) unit is then clear.
(b). The given equation is ecuivalent to finding X in
) e Tt S R . . e
I = pF)lX = s €@ (Al s As  det (I = pF is invertible in B[(,)], it is

a unit in l’.n~!,{ {((A). So 1 - (F is an invertible matrix and there

is a unique solution, as wanted.

(a)., Ag in ordinary differentinl equations, given the
equation y + ... ¥ b y (v, solve for ¥y in the simultancous

equations

A PORE S S T S, t u)

J ‘ ( L.r l n.]n

v ‘ “"l

¥ PY¥.. v !
el ¢ ne-!

The elements of Bl (,)! will be called rational maps.

£155) DEFINTTION. 'The subring of BI(,)] corresponding to those
pover series cf order 0 will be called the ring of cnausal rational

endomorphisms. 16 will

oted by B [() 1.

(1.h) ORCERVATION. Causal rational maps & are then those which
-1 g " &
admit a factorization s PG « With Piv) 0, q(0) = unit. Also,

any such 38 admits a factorization 81 0 vith g8 a rational map.
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,Tyef‘“-w;{l'

But then, we ecan define m 3 in i-nlu (A) by the sqame formula
(where now @ A A)y, and & clearly extends s. By abuse of
notation., we shall identify s =md 5. and hence think also of

B () ag » subrine of !~|\le (A}, the precise menaning being clear
from the context. Accord.inly, a B-homomorphism f: A = AP

will be called causal rationnal when each coordinate map belongs to

(the set of extensions of’) Y’-{_" (p)].




We shall assume throughout this section that B is an intepral
domain. Ry R B we chall denote nlways an arbitrary admissible

triple.

Given b } sne dn B Lp)) and p=d. F ap H 0.
n l ¢ il G
b g in Blpl € End, (pA), denote by p_ :=a +ta s+ ...+ as
n - B 5 o 1 n
skt & o S o 2 o , nt ( ik g | 2 \
the substitution of s in p. Observe that p(0) - a ps(ﬁ;, so (in Bcr(,)x
p 1is invertible if and only if p_ is a unit. Given an arbitrary

1 -1

f Pa in B[(,)]., define b= pg . 1t is easy to see that
—_— : s's
o no o
P Bl T N A R then (’n B "]h'(“ (n]b,‘ ! n:‘bl)p +

t ... . The assignment ¢ £ f_ is a ring endomorphism of B[(p)].
ct, it is injective, because B has no zero divisors. Moreover,
ig in B a0, f is also causal, so « induces an
. ST Y | et m Mt M ;
rphism of  Boftp) s Tf (£ A A is causal rational, define
f by substituting in each coordinate.

e is in B i{p)}l. Then (A, B, 8) is an

admicsible triple.

PROOF. Algebraic independence of & is clear. Let now p
in Blnl| be such that the element p(0) is a unit. Then
tb) in (1.1) amounts to proving that for every u in A there is

a unique y with p y su. But this follows from the fact that

su i in pA and' is an isomorphism in I‘LIHH (pA) . |
{2 &) PEFIMITION. Given f in B [(p) ], define the rank of T,
LA 11 o SEE R R A A

r(f), nas the smallest of the numbers max {deg p, deg q} for all

-1 : ; (
possible factorizations £ - pg with p. q in Blnl, p(0) 0.

T B iz o unioue factorization domain, then the above minimum

can be found direetly from nn irreducible f:ctorization of f.

(7.%)  OBSERVATION. Assume now that f p'!-] ‘ H(\l (p)], with

m

D a g ¥ e P A and Wy e By w0 Glven
n' 1 > m nm
-1 . : : - n k-n
u = rs with r(0 0, s(0) 1, define D : ars b e




-1 m ¥ -m k
Y 007 (R T "' 8 P ...+ 8, where k is the greatest
i I
-1
of m and n. It is clear that I _ PQ ~, and a simple calculation
shows that mox {deg b, dep Ql k + max (degr v, depr sl.
We have proved then that v"t“‘ r(f)r(u). Actually, more is

true in an important special cnse:
FROPOSITION. Oupj B iaa dield. "Then, florany £, u in
B [ ()}, "wlf ) 17 ) Tl iy ) O
¢ u

PROOF. The result will follow if we prove that for p, q, r, s
as in Al A e, g) (v, s 1 SEhent allsol (P Q) 1. Assume on
the contrary that there is some polynomial t dividing both P and
0. let K be an algebraic extension of B containing a root a of
t. Then Fla) Qln) 0.

Claim: sfa) 4 0. Indeed, assume s(a) = 0 and suppose that

) m m-1 m
m> g, Thea 0 = b rt & s(b .r O e el e ) b r(a)

m m-1 m

and 13 . But (1 s} ] implies that they can not have common

roots in any extension.

Writ

pib) ( A

contradicts

The main

THEO

P

rationnl

e b

lso, O
the fact

result

8
e

R

(7
T

PROO

Obgserve nlso

this iz merely another way of saying that the map

Denote m

cstandard methods from

|3 m/n.

k.

r‘r'\

atisflying

F.

that 4fF

rid s

From (2.4)

rial/s

Ascume that

n

A contradiction

€ K. Then

Gla) :;’n‘kq'h\.

that D, a) 1s

e

oo

is

B

s A

Am :

mnd s

_an algorithm which will either find

f &, or it will

a field. UGiven (8a

N - A

is also arrived at if n > n.
Kk

Ol = Pla) = sta) p(b), so

£o qlb) 0. As before, this

v, as quotients

both causal rational,

A, AP

0 2 causal

v
3

decide that no such g exists.

It is enourh to prove the theorem for

as nbove exists,

ris)l; both numb

the representations
if

it follows that,

m 1

p
then it is unique: indeed,

Wik h 48 injective.
ers are calculated by
of £ and 8. Denote
a g exists, we must have




A st i i ST ‘ : 7
,‘ Assume o o . o] " We are trying to find
S 1 3
1 -
£ X . satisfying .
i
¢ > Bl
1 |88
. d. 1
; 2
ete.
Denote by C the column vector with the entries e¢., ...; C-
] o'm

and by D the {triangular) matrix for the corresponding d.,, so
i

that the 2m first rows of ) correspond to the equation C DX,

with

rm=-vector.

Claim: g exists if and only if both (a) there is a solution

£ of € DX. and (b) this solution satisfies rank H
mtl,m
rank H k, where
m,m
I |
% X pad S L |
I J !'
| .
{l ® |
: I i
i t x |
Ly .o I . ‘l
- . [
1 X !
LS itj-1 "

Proof of necessity. If there is such a g, then condition

a) is obviously satisfied: (b} follows from the fact that the rank

of H k iec k <~ m., and is equal to the rank of the (infinite)
Hankel matrix of g.
Sufficiency. Assume there is an X satisfying (a) and (b).
By EKALMAN, FALB and ARBIB (1909, p. 331!, there is (and one can
construct) a (unique) g .of rank k with first ”m coefficients
- equal to x., ...y X.. . We are only left to prove that ¢ g .
] m ’ 'S
Bat rig. ) kn n rifls and from € DX it follows that the

’

first m terms of g and f coincide. FEquality is then a

congsequence of well-known fnets from renlization theory over fields. ()

It iz not claimed, of course, that the previous algorithm is

efficient, bul only that it gives the required answer.




] will happen if and only if

COROLIARY.  Theor

erally closed domain.

2lements of K [(p) snd

| Fo

a solution in |

uniqueness.

"
H

S0 holkda Por

the field of fract
solve for a g vi:

i f and only if g

From BEILENBERG {1974, Th. 12.21, it

{ over k) and the

the coefficients

entries of X are

B an arbitire

iong of B. view £, s

. 'Then there will

is easy to show that this
of the minimal polynomial

AR Sy

completel;

LTS
Jy

as
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o i 3 limeneional constant linear systems. In this case let

A consist of all loecally integrable functions f: [0, ») -» R with
£ . For any such f. let o{f) dn A be given by o(r)(t)

f{s)ds. Then, with the pointwise R-space structure for A, it

follows from basic theorems in differential equations that (A, R, p)
is admissible. This example shows the improvement over the setup

in SONTAG [197%], where C, had to be used for A.

(Do ’."*‘!'ini,i:!_;_:'__(;lf Gl gl Tt might be wanted to allow for impulses

as inputs. but still essentially use functions for the states. For

. 1 ~ . -’ . . S 3
example, in the context of Mikusinski's operational calculus, define

{

C :- the convolution algebra of continuous real (or complex)-valued

: ; : ; -1 : .
functions with domain [0, ). Define  := s (the "integration"

operator), and A := s C. Cbserve that the elements of A can be
jdentified with (equivalence classes of) piecewise continuous locally

integrable functions. Admissibility is well-known (see for example

Compositions of a fixed Volterra operator. Here define

A as in (5.1). Assume kf(g, t) 1is a (fixed) continuous real valued
function for all O < t =< &. Define p by (nx)}(s) := [  k(s, t)x(t)dt,

0O

A

for all x in A. We claim that (A, R. )  is admissible. As B

iz here n field. we only need to check (b) in (1.1). Write

Hot= = (bot ..+ b ), then it is known that H is also a
Volterra operator, say with kernel h(s, t). Given u in A, let

v i ou: then v is conbinuous. The conclusion in (1.1.0) is
eauivalent to proving thakt, for all positive a, there is a unique
solution. in Clo, a], of the equation y(s) = [° h(s, t)y(t)dt = v(s).
But this last fact Collows from TAYLOR [1958, p. 108].

(5.h) "1‘1"}-'_'_jrr1_7.3‘1“("i_n_i_ln_‘:_lji}mf_n_.':ﬁ.zw_(]_'{lw:_‘.;,_'_."_h(ilrx;_:. let X be a real

Banach space, and B a commutative algebra of linear bounded operators




L 2wy

B o

» X, Define A aas the additive group of loeally Bochner-integrable
functions [0, =) -» X (see LADAS and TAKSHMIKANTHAN (1972, p. 10]).
Let be the operator f bf fis)ds. Admissibility follows from

local existence of solutions of differentinl eaquations plus the

fact that ;A consists entirely of (strongly)! continuous functions.

) A1l the eyamples (discrete-time, cellular, delay-differential,
ete.) in SONTAG [1075 1, with , here corresponding to ,—] there.
For instance, retarded delay-differential equations are introduced as
follows. Let A consist of all locally integrable functions f: R - R
with support bounded to the left, i.e. with f(1) = 0 for all =
sufficiently small. Let o(f)(t) := It r(t)dr, o_i= a-second shift
operator tﬁn(t): - u(t-a), and let B::n:,: O g mvay O ', for some
fix~d set of positive rationally independent real mnmngm Aps wees a.r.
Admissibility is a consequence of the theory of delay equations; note
that the definition of A 1is equivalent to setting initial conditions

equal to zero in a suitably chosen interval.
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B, FINITARY LINEAR SYSTEMS

realizntion theorem. -

We shall assume throughout that (A, B, ;) is a fixed (but

arbitrary) admissible triple.

Pt DEFTNITION. An Ay By n) i‘_.',f.'_i,".'f,',“ .l);!'___'},p L_ri'!~ le

off B-matrices (F, G, H) of dinensions nx n, nXx m and pX n
! . ; m Il 3
respectively. The ipput map IL: A = A is the group homomorphism
: : 3 . m = ; ; n
which assigns to each u in A the unioue solution x in A
. ; - . o : : m )
of the equation x AiBx + Gu).  The vesult is .. = ll-Lz A -l\I .

with input-output funetions » (for example, intepgrators), inter-
connected via adders and operators in B (e.g. amplifiers or delays).
The inputs act via similar connections, and outputs of J are
obtained by forming suitable combinations of the outputs of these
"black boxes". Other very different interpretations are possible

in the cage of "cellular systems', ete.

|3 DEFINITION. The rank of X, ()

by definition, the

is said to be of minimal rank when it has

rank among all 7 with the same result.

m n

1:35) THEOREM. Assume f: A s A dhen ¢ ds the resulb of
some (A, B, )-system if and only if f is causal rational.

FROOF. The problem is that of proving there is a one~to-one

(P

correspendence between elements of R (), and maps of the form

o

=1 . . mhl
WT « off) ofF HE Gy r
n-0 n-0

But the results in realization theory for discrete-time B-systems

pive the theorem.

We can interpret ¥ as given by an interconnection of "black boxes"



tmra——

Given an (A, B, ()-gystem J., we want to define the substitution
of a scalar (i.e. m p 1) system '-" into ¥ as that system
obtained by replacing nll "black boxes" marked "" 1in 3 by copies
of ,« In other words, » should consist of suitable connections
of the basic system .+ For simplicity, we shall assume m P 1

for all systems in this section.

) DEFINITION. If ! (F, G. H) and (UL Ve, W) are t,wo.

] ALk

A. B, p)-systems, the (A, B, p)-system J( ]\ EE DB ol
rank 1) ) e I is defined as follows. For notational convenience,
let the indices rum over all pairs (i, j) with 1 < i r(>.ll,
g ris). Then; let
G, 0 N = G e 0 A o
et r o8l i ha G S
and = G.U, b | R
- Ji s Js -
Iensageituees G oVt
e D il
E LT T
iy R
i IEMMA, let f be the result of the result of X..

1

Then the result of 2(3.) 18 f_ = W(I - sU)

PROOF. Assume u is in A; we want to find the output of

given that the idimput is8 w. By definition of 5(5.), Ffor

each (i, j) we have for X Tu:

Nosie il

(i,3) f (poe) A (ryal- (e ys) Litiyta
; P, &, e e R e T
‘ 5 1l e L) e R o

where we have denoted =z ¢ H_ x, \ Hx and X, is the column

I o K I -

’ n ; . x

vesctor in A ¢ 0 il Y, with entries x, AR y+  With

] (e 1) fryn

the further notation v, : . U, 7z + V. u, the equations above can
i r iy i
be written:




r
Solving for X., We have X, (T - ,l"\_l,.(l'.'i. hence for every
’ i Z, ?!'-:i ::n'i.. llenote by 2z the column vector in /\q. q=r(),
vith entries 2., .... 7 . ‘'hen it follows from the definition of the
| v, that 2 satisfies the equation =z - s(Uz + Vu), so
A i | ERRERT | _]:'.Vn. The output of Xl ) ig then

¥ ) Srin Boe By ooy = SO
‘ (154 ey {1, S e T 88 P

'.'J.:'i Wz W= ::ll‘)-]sVu 200y

as wanted.

THEOREM. Assume that B is a field and that ¥, ".] are
minimal rank (A, B, p)-systems. Then, J""'I) is also minimal.

FROOF. It is well known that minimality for any system 3

over a field is equivalent to the relation r(}) n(E . Bubt, by
3 definition of X(&.), we have
r ) 008 ol l\ r(f)r(s) B )
- / )
using \(i.e A}, [
' (2.4) THEOREM. Assume B is a completely integrally closed
} domain. Given the (A, B. ;)-systems ‘l’ .y there is an

algorithm which either constructs a > such that ‘“(‘Zl) has the same

input /output behavior as %, , or decides that no such & exists.
2 bl

FROOF, A direct consequence of COROLTARY (A.2.6): if g is

found, any realization algorithm gives a ¥ with £ g (&

{25 ORCERVATION, TIn some cases, we might want a stronpger result.

For example, take the delay-differential cnse, where B is a finitely

(2

generatel algebra over a field K (here, the reals). From (2.0)

A

we know how Lo decide if a piven delay-differential system [, can be
! "simulated" by the use of n system ,".] and connections in B, i.e.
admitting other delays. But we might want to ask whether the same result

R it e et e




1 be achieved uzing only sealar interconnections (i.e. amplifiers).
This is readily solved: from the fact that a field is (trivially)

‘ completely integrally closed, it must only be checked that the g

found is in K ('], and for this it is enourh to check its

o~

minimal polynomial. (1)

ke

»




C. TIME-SYSTEMS

The system descriptions in the previous sections do not allow explicit
consideration of time, so many properties, like reachability, cannot be
even defined in that generality. We show now one way of introducing

time into our framework.

(1.1) DEFINITION. A monoid T has left common divisors iff for each

¢, t' in T therearea T in T and a,b in T such that t = 7a, t'= Tb.
(1.2) BXAMPIES. (i) T:= any group.
(ii) T:= any A -semilattice, with xy:- xAy; in particular

any totally-ordered set T, like the reals or the integers.

e

n
i

In what follows, is an arbitrary but fixed monoid as above, and k

is a fixed field. Let k denote the set of all functions T — k; this
set has a natural k/T!-module structure, namely, each t in T acts as

a shift o: wt(w)(a):z w(at).

(1.7) DEFINITION. (A, B, n) 1is a time triple iff it is admissible

3 i 1 2 N
and A 1is a k[Tl|-submodule of k and Bl is a subring of Emika (n).
The above is of course just a way of stating that and all operators

in B are shift-invariant. We fix now (A, B, n) as above.
(1.4) DEFINITICN. Civen an (A, B, n) system (7, &, Hi), let

REACH,, := {x in X7, x = (Lo(w)(t), v in A", t in T}.

is pointwise reachable iff REACH. = X'.

(1.9) IEMMA. REACH. is a subspace of X'.

PROOF. Let x = L(w)(t), v = L(w')(t'). .Choose T, a, b as in (1.1).
Then rx + y - L(rwn(w) 1 Wh(w'))(w), for any r in k. O

(1.7) THROREM. 5 is pointwise reachable if and only if there is no

v

v in X' guch that
n-1
(*) Y0 ¥6, sves P B = D
PROOF. Assume that HKACHE / k. Then there exists a v in k"
such that HEACHF C ker v, when v 1is regarded as a map kn sk, Let
" A, x)(t):- vx(t). Then

v be the constant function v, i.e. v: A

(**) 0 =y'L = v'(I = oF) "nG.

Fressgeageee . |
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Expandirm (I - oF) in powers of pives the result (*),

The converse is equally clear, since (*) implies (**) via the

Cayley-Hamilton Theorem.

(1.6) APPLICATIONS. The above theorem gives a unified proof of the
well-known reachability ecriteria for both continuous- and discrete-time
finite-dimensional linear systems. 1In the delay-differential case,
introduced in example A.%.", ¥ and G are polynomial matrices. Since
a polynomial is zero iff each of its coefficients is zero, (¥) can

also be expressed, -in a rather involved way !,- as a rank condition

on constant real matrices. Tn the latter form, a special case (r = 1,
only one delay in ¥, and no delays in G) was known before; see
KIRILILOVA and ﬁﬂﬂﬁ?07f‘1lv' . The general result was announced with

an ou%line of its proof in SONTAG| 19741.
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